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Bats are known to host viruses closely related to important human coronaviruses (HCoVs), such as HCoV-229E, severe-acute
respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV). As RNA viruses may
coevolve with their hosts, we sought to investigate the closest sister taxon to bats, the Eulipotyphla, and screened European
hedgehogs (Erinaceus europaeus) from Germany for CoV by nested reverse transcriptase PCR. A novel betacoronavirus species
in a phylogenetic sister relationship to MERS-CoV and clade c bat CoVs was detected and characterized on the whole-genome
level. A total of 58.9% of hedgehog fecal specimens were positive for the novel CoV (EriCoV) at 7.9 log10 mean RNA copies per
ml. EriCoV RNA concentrations were higher in the intestine than in other solid organs, blood, or urine. Detailed analyses of the
full hedgehog intestine showed the highest EriCoV concentrations in lower gastrointestinal tract specimens, compatible with
viral replication in the lower intestine and fecal-oral transmission. Thirteen of 27 (48.2%) hedgehog sera contained non-neutral-
izing antibodies against MERS-CoV. The animal origins of this betacoronavirus clade that includes MERS-CoV may thus include
both bat and nonbat hosts.

The Coronaviridae subfamily Coronavirinae contains the four
genera Alpha-, Beta-, Gamma- and Deltacoronavirus (1, 2).

Betacoronaviruses are further discriminated into clades a to d.
Until recently, five human coronaviruses (HCoVs) were known,
namely, the alphacoronaviruses HCoV-229E and HCoV-NL63
and the betacoronaviruses HCoV-OC43, HCoV-HKU1 (both
clade a), and Severe acute respiratory syndrome coronavirus (SARS-
CoV, clade b) (3–8). In 2012, a highly pathogenic novel HCoV
termed Middle East respiratory syndrome coronavirus (MERS-
CoV) emerged (9–11). MERS-CoV belongs to the Betacoronavirus
clade c, which previously contained only bat CoVs (BtCovs) (12–
17). Because of the high number of bat CoVs newly described in
the aftermath of SARS, it was assumed that all mammalian CoVs
originated in the order Chiroptera (18). The majority of these
novel bat CoVs were found in insectivorous bats (18). Therefore,
we speculated that other insectivorous mammals could also har-
bor CoVs. This might specifically apply to the animal order Euli-
potyphla, which includes hedgehogs, moles, solenodons, and
shrews, because this and the order Chiroptera are phylogenetically
related (19). For this reason, we analyzed fecal samples from 248
European hedgehogs (Erinaceus europaeus) for CoVs. A novel be-
tacoronavirus clade c species was found and described using mo-
lecular and immunologic tools.

MATERIALS AND METHODS
Sample collection, processing, and screening for coronavirus RNA. Fe-
cal samples from European hedgehogs (Erinaceus europaeus) kept in an
animal shelter in northern Germany because of poor physical condition
or injuries were sampled noninvasively and stored in RNAlater (Qiagen,
Hilden, Germany) at �20°C until further investigation. For the initial
CoV screening, fecal samples of 10 individual animals were pooled. RNA
purification and CoV detection using two different nested reverse tran-
scription-PCR (RT-PCR) assays targeting the RNA-dependent RNA poly-
merase (RdRp) gene were done as described previously (16, 20, 21). Indi-
vidual specimens in positive pools were identified using a strain-specific
real-time RT-PCR (oligonucleotide sequences available upon request)
based on the nucleotide sequences obtained from sequencing of initial

PCR amplicons. For phylogenetic analyses, sequences from the PCR
screening assays were extended to an 816-nucleotide (nt) RdRp fragment
(22). In addition, carcasses from 27 hedgehogs that died in the animal
shelter during their stay were collected and stored at �20°C until dissec-
tion. Samples from the brain, heart, lung, liver, kidney, spleen, and intes-
tine were taken. The intestines of five additional CoV-positive animals
were cleaned and dissected in 10 portions taken in equal intervals imme-
diately after the stomach and until the anal orifice.
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FIG 1 Betacoronavirus phylogeny, including the novel viruses from European
hedgehogs. Bayesian phylogeny of an 816-nucleotide RdRp gene sequence
fragment corresponding to positions 14822 to 15637 in MERS-CoV strain
EMC/2012 (GenBank accession no. JX869059). The novel Erinaceus viruses
are shown in red, and MERS-CoVs in blue.
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Blood was sampled from inside the heart and urine from inside the
bladder by puncture of these organs before removal. Quantification of
viral RNA was done using strain-specific assays and photometrically
quantified in vitro cRNA transcripts as described previously (10, 23).

Whole-genome sequencing. RNA extracts of two positive samples were
determined and prepared for 454 next-generation sequencing (NGS) as de-
scribed previously (24, 25). Sequences obtained from 454-NGS were repro-
duced on individual samples and connected by long-range reverse transcrip-
tion-PCR using specific oligonucleotide primers (available upon request).
Determination of the 5= and 3= genome ends was done using a rapid amplifi-
cation of cDNA ends kit (Roche, Penzberg, Germany). PCR products were
sequenced by dye terminator chemistry (Seqlab, Goettingen, Germany).

Genome analyses. The nucleotide sequences of the genomes and the
amino acid sequences of the presumed open reading frames (ORFs) were
compared to other c clade betacoronaviruses for which full-length genome
sequences were available. Nucleic acid alignments were done based on
the amino acid coding using the MAFFT algorithm (26) in the geneious soft-
ware package (Biomatters, Auckland, New Zealand). Phylogenetic analyses of
the extended screening fragments, as well as the presumed ORFs, were done
using MrBayes version 3.1 (27) using a WAG amino acid substitution model
and 4,000,000 generations sampled every 100 steps. Trees were annotated
using a burn-in of 10,000 in TreeAnnotator version 1.5 and visualized with
FigTree version 1.4 from the BEAST package (28). The pairwise identities of
all ORFs and predicted proteins of the two Erinaceus CoVs (EriCoV) were

calculated using MEGA5 (29). Similarity plots were generated using SSE ver-
sion 1.0 (30) using a sliding window of 400 and a step size of 40 nucleotides.

Virus isolation attempts. Isolation of virus from those specimens
containing the highest RNA concentrations was attempted on Vero E6
cells, which are known to support MERS-CoV infection (31). In addition,
immortalized kidney cells of a Pipistrellus bat and immortalized lung cells
from Crocidura suaveolens from the animal order Eulipotyphla were used
for isolation attempts (our own unpublished cell lines).

Serology. Blood samples obtained during dissection of the 27 hedge-
hog carcasses were tested for antibodies against MERS-CoV using a
commercially available indirect immunofluorescence assay (IFA; Euro-
mimmun AG, Lübeck, Germany) with slight modifications. A rabbit anti-
suncus immunoglobulin G (IgG) adapted for cross-recognition of hedge-
hog Ig was used as a secondary antibody at a 1:200 dilution. Detection was
done with a cyanine 3-conjugated goat anti-rabbit IgG (Dianova, Ham-
burg, Germany). Virus neutralization tests against MERS-CoV were done
as described previously (32). Briefly, blood samples were serially diluted
from 1:20 to 1:2,560 in serum-free medium, mixed with 100 PFU, and
preincubated for 1 h at 37°C before being added to a Vero B4 cell mono-
layer. After adsorption for 1 h at 37°C, the serum-virus mixture was dis-
carded and fresh medium (Dulbecco’s modified Eagle’s medium) was
added to the cells. Cytopathogenic effects were visualized 3 days postin-
fection by fixation and staining with crystal violet solution.

Nucleotide sequence accession numbers. The four virus sequences
obtained from European hedgehog fecal samples were deposited in
GenBank with accession numbers KC545383 to KC545386.

RESULTS AND DISCUSSION

Fecal specimens from 248 European hedgehogs (Erinaceus euro-
paeus) were tested for CoVs by broad-range nested RT-PCRs. This
approach yielded four different virus sequences. These sequences
(GenBank accession numbers KC545383 to KC545386) were clas-
sifiable as clade c betacoronaviruses in initial BLAST comparisons
and were named Erinaceus CoV (EriCoV). Within EriCoVs, two
different clades separated by 3.1 to 3.4% nucleotide distance in an
816-nt RdRp fragment were identified. Figure 1 shows a Bayesian
phylogeny of this RdRp fragment. All EriCoVs grouped phyloge-
netically within the Betacoronavirus clade c. The EriCoVs clus-
tered in sister relationship to a clade defined by the bat CoVs
HKU4 and HKU5, the MERS-CoV-related viruses, and a clade of
Nycteris bat CoVs. The amino acid distances to the clade c proto-
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FIG 2 Erinaceus CoV RNA concentrations in solid organs, urine, and blood,
and virus distribution within the intestine. (A) Virus concentrations in solid
organs, urine, and blood of 12 EriCoV-positive animals are given in log10 RNA
copies per milliliter or gram of tissue. Horizontal bars represent mean virus
concentrations per organ category. Missing bars represent negative test results.
For all organs, specimens from 12 individual animals were available, except
urine, where no specimen was available from animal 12. Colors represent
individual animals as identified in the key. (B) Ranges of EriCoV concen-
trations in 10 different intestinal sections of five RNA-positive individuals
are given in log10 RNA copies per gram of tissue. Black horizontal bars
represent mean virus concentrations; ***, P � 0.005 according to Mann-
Whitney U test.
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FIG 3 Serologic testing of hedgehog blood. (Top) Reaction patterns of a re-
active (23) and a nonreactive (22) hedgehog serum with MERS-CoV-infected
Vero cells at 1:10 screening dilution. (Bottom) Endpoint dilution of serum
sample 23. Scale bar, 20 �m.
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FIG 4 Genome organization of EriCoV and other clade c betacoronaviruses. Genomes are represented by black lines, and ORFs are indicated by gray arrows. The
ribosomal frameshift site (RFS) at nucleotide positions 13578 to 13584 (EriCoV/2012-174) and 13605 to 13611 (EriCoV/2012-216) is marked with a black arrow.
The locations of transcription regulatory core sequences (TRS) are marked by labeled dots.

TABLE 1 Coding of potential and putative transcription regulatory sequences of the EriCoV genome sequences

a Dots represent identical nucleotides in comparison to the leader TRS. Numbers in parentheses represent number of nucleotides to the putative start codon, indicated by
underlining. The conserved TRS core sequence of clade c betacoronaviruses (40, 52), ACGAA, is highlighted in gray.
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type viruses HKU4, HKU5, and MERS-CoV were 7.7 to 8.8% in
the translated 816-nt RdRp fragment. The distance from the
Nycteris CoV was 8.5 to 9.2%. In our previous proposal to tenta-
tively classify CoVs into RdRp-grouping units (RGU), which are
predictive of species classification, betacoronavirus species were at
least 6.3% different on the amino acid level in this sequence frag-
ment (22). EriCoVs therefore represented a novel tentative beta-
coronavirus clade c species.

For an estimate of EriCoV prevalence and an assessment of
viral RNA concentrations, all specimens were retested using
strain-specific real-time RT-PCR assays. EriCoVs were now de-
tected in 146 of 248 individual specimens (58.9%). Viral RNA
concentrations were high, with a mean of 7.9 log10 copies per ml of
fecal suspension (range, 4.2 to 11). Isolation of virus was at-
tempted unsuccessfully on three different cell lines for those spec-
imens containing the highest RNA concentrations.

The high detection rate and virus concentrations in feces ap-
peared compatible with replication in the intestine. Therefore, 27
hedgehog carcasses were dissected and the intestines were tested
using specific real-time RT-PCR assays. EriCoV RNA was found
in intestinal specimens from 12 of these 27 animals (44.4%). The
difference in detection rates between feces and intestinal speci-
mens was not statistically significant (corrected �2 � 1.5, P � 0.2).
The data in Fig. 2A show that intestinal virus concentrations in
these 12 animals were high, 6.78 log10 mean RNA copies per gram
of tissue (range, 3.9 to 11.8). The mean virus concentrations in all
other solid organs, urine, and blood from these 12 animals were at
least 10-fold lower. This and the high EriCoV detection rate in
feces might be compatible with a fecal-oral route of transmission.
Furthermore, the high EriCoV concentrations were compatible
with virus replication in the intestinal tract. This was comparable
to viruses replicating in the human gut, such as Aichi, rota- and
noroviruses (33). We could not determine if infection was associ-
ated with clinical disease in hedgehogs. While gastroenteritis

caused by CoVs is not rare in animals (34), intestinal virus repli-
cation could also be asymptomatic or associated with nonenteric
disease, similar to, e.g., human enteroviruses (35).

Because only small fragments of the intestine of the initial 27
animals had been collected upon dissection, it was impossible to
determine in which portion of the gastrointestinal tract the virus
might replicate. Therefore, five additional EriCoV-positive intes-
tines were identified by testing of 10 additional hedgehog car-
casses. The entire intestines of these animals were cut into 10
equal-sized pieces starting from the stomach, and EriCoV RNA
concentrations were determined in each portion. The data in

TABLE 2 Prediction of the putative polyprotein pp1a/pp1ab cleavage sites of hedgehog coronaviruses based on sequence comparison with MERS-
CoV strain EMC/2012

NSP
First–last amino acid residuesa

of EriCoV/2012-174b

Protein
size (aa)

First–last amino acid residues
of EriCoV/2012-216c

Protein
size (aa) Putative functional domain(s)d

1 Met1–Gly200 200 Met1–Gly200 200
2 Asp201–Gly859 659 Asp201–Gly859 659
3 Ala860–Gly2805 1,946 Ala860–Gly2814 1,955 ADRP, PL2pro
4 Ser2806–Gln3310 505 Ser2815–Gln3319 505
5 Ser3311–Gln3616 306 Ser3320–Gln3625 306 3CLpro
6 Ser3617–Gln3908 292 Ser3626–Gln3917 292
7 Ser3909–Gln3991 83 Ser3918–Gln4000 83
8 Ser3992–Gln4190 199 Ser4001–Gln4199 199 Primase
9 Asn4191–Gln4300 110 Asn4200–Gln4309 110
10 Ala4301–His4440 140 Ala4310–His4449 140
11 Ser4441–Leu4454 14 Ser4450–Leu4463 14 Short peptide at the end of ORF1a
12 Ser4441–Gln5374 934 Ser4450–Gln5383 934 RdRp
13 Ala5375–Gln5972 598 Ala5384–Gln5981 598 Hel, NTPase
14 Ser5973–Gln6496 524 Ser5982–Gln6505 524 ExoN, NMT
15 Gly6497–Gln6839 343 Gly6506–Gln6848 343 NendoU
16 Ala6840–Cys7150 311 Ala6849–Cys7159 311 OMT
a Superscript numbers indicate positions in polyprotein pp1a/pp1ab, with the supposition of a ribosomal frameshift resulting in a peptide bond between Asn4448/Arg4449
(EriCoV/2012-174/GER/2012) and Asn4457/Arg4458 (EriCoV/2012-216/GER/2012) for the expression of ORF1ab.
b GenBank accession number KC545383.
c GenBank accession number KC545386.
d ADRP, ADP-ribose 1�-phosphatase; PL2pro, papain-like protease 2; 3CLpro, coronavirus nsp5 protease; Hel, helicase; NTPase, nucleoside triphosphatase; ExoN, exoribonuclease;
NMT, N7 methyltransferase; NendoU, endoribonuclease; OMT, 2= O-methyltransferase.

TABLE 3 Comparison of amino acid identities of seven conserved
replicase domains of the hedgehog coronavirus and prototype clade c
betacoronaviruses for species delineation

Domain

% amino acid sequence identity (range):

Within
EriCoVa

Of EriCoV compared to:

MERS-CoVb HKU4c HKU5d

ADRP 96.9–100 71.3 57.5–59.4 61.3–61.9
NSP5 (3CLpro) 99.0–100 79.1–79.7 72.9–73.5 76.8–77.1
NSP12 (RdRp) 99.0–100 88.9–89.4 87.2–88.1 88.1–88.7
NSP13 (Hel, NTPase) 99.6–100 91.1–91.5 89.5–90.0 90.3–90.8
NSP14 (ExoN, NMT) 99.6–100 89.5–89.9 83.2–84.3 88.0–88.4
NSP15 (NendoU) 97.1–100 82.5–83.1 74.3–75.4 78.4–79.3
NSP16 (OMT) 99.0–100 86.5–87.5 81.5–82.1 83.8–85.1

Concatenated
domains

98.9–100 86.9 82.4–82.8 84.8–85

a Including sequences with accession numbers KC545383 and KC545386.
b Including sequences with accession numbers JX869059 and KC164505.
c Including sequences with accession numbers EF065505, EF065506, EF065507,
EF065508, and DQ648794.
d Including sequences with accession numbers EF065509, EF065510, EF065511, and
EF065512.
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Fig. 2B show that the highest concentrations were detected in dis-
tal (aboral) parts. The virus concentrations in these sections were
significantly higher than those toward the stomach (Mann-Whit-
ney U test, P � 0.005). This was comparable to the higher PCR
positivity rates in aboral than in oral intestine sections in a previ-
ous study on Leschenault’s rousette bats fed CoV-positive tissue
from other bats (36).

To determine antigenic relatedness to MERS-CoV, hedgehog
sera and secondary anti-suncus immunoglobulin (Ig) were
adapted for use with a commercially available MERS-CoV IFA. At
a serum dilution of 1:10, 13 of 27 (48.2%) blood specimens were
reactive. The median IFA endpoint titers were 1:100 (range, 1:10
to 1:400). The images in Fig. 3 exemplify the IFA reaction patterns
of positive and negative sera. To analyze whether the observed
antibodies were indeed directed against MERS-CoV, all IFA-pos-
itive sera were tested in a MERS-CoV neutralization assay. None
of the IFA-positive sera contained MERS-CoV neutralizing anti-
bodies in dilutions higher than 1:20. This was compatible with
cross-reactivity of anti-EriCoV antibodies with MERS-CoV,
which they bound but did not neutralize, similar to cross-reactive

anti-HCoV antibodies in humans (37, 38). The high frequency of
EriCoV infection and the absence of other CoV sequences in
hedgehogs in our study could indicate that all detected antibody
titers were indeed specific for EriCoV. Six of the 13 IFA-positive
animals (46.2%) showed concomitant detection of EriCoV RNA,
implying that some hedgehogs may have cleared EriCoV infection
or that a different CoV hypothetically elicited the observed anti-
body response. On the other hand, 6 of 12 PCR-positive animals
(50%) showed no detectable antibodies, compatible with sam-
pling before seroconversion.

To confirm the RGU-based tentative species classification and
to investigate the genetic relatedness between EriCoV and MERS-
CoV, one whole-genome sequence was generated for each of the
two EriCoV subclades (represented by viruses EriCoV/2012-174
and EriCoV/2012-216). The sizes of the two EriCoV genomes were
30,137 and 30,164 nt, with a G�C content of 37%. The numbers and
locations of EriCoV ORFs, as well as seven transcription regulatory
sequences (TRS) preceding them, were characteristic for clade c be-
tacoronaviruses (2, 39). Figure 4 shows the genome organization of
EriCoV and other clade c betacoronaviruses. Table 1 provides
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FIG 5 Genomic sequence identity between EriCoVs and other clade c betacoronaviruses. Similarity plots were generated using SSE version 1.0 (38) using a
sliding window of 400 and a step size of 40 nucleotides.

TABLE 4 Identities between open reading frames of the novel hedgehog coronavirus and prototype clade c betacoronaviruses

Annotation in
EriCoV

Annotation in
MERS-CoV/EMC

Annotation in BtCoV-HKU4
and BtCoV-HKU5

% amino acid identitya:

Within
EriCoV

Of MERS-CoVb

to EriCoV
Of HKU4-1c

to EriCoV
Of HKU5-1d

to EriCoV

ORF1ab ORF1ab ORF1ab 97.4 73.9–74.0 68.8–69.1 71.0–71.1
S S S 98.5 57.9–58.2 58.4–58.6 58.2–58.3
ORF3a ORF3 NS3a 92.3 26.7–28.9 28.2 27.8–28.9
ORF3b ORF4a NS3b 93.6 39.5 39.5 44.3
ORF4a ORF4a NS3b 97.5 39.5 39.5 44.3
ORF4b ORF4b NS3c 96.0 39.3–39.7 29.3 27.8
ORF5 ORF5 NS3d 100.0 52.2 38.3 45.1
E (ORF6) E E 100.0 72.0 62.2 59.8
M (ORF7) M M 99.5 78.9–79.4 78.0–78.4 78.9–79.4
N (ORF8) N N 98.6 71.9–72.1 71.1 69.4
ORF8b ORF8b Undescribed 93.5 53.6 41.2–42.8 46.6–47.6
a Pairwise identities of all ORFs and predicted proteins of the two EriCoVs were calculated using alignments based on amino acid coding by the MAFFT algorithm (20) in the
geneious software package (Biomatters) and MEGA5 (29).
b Accession number JX869059.
c Accession number EF065505.
d Accession number EF065509.
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details on the TRS and their genomic localizations. The predicted
leader TRS of EriCoV (AACUCUUGUUUUAACGAACUUAA)
differed by only three nucleotides from those of the betacorona-
virus clade c prototype viruses HKU4, HKU5, and MERS-CoV
[AACUUUG(U/A)UUUUAACGAACUUAA] (40, 41). The pre-
dicted AUG codons of ORF3b, ORF4b, and ORF8b were not pre-
ceded by separate body TRS elements and may be translated from
bicistronic mRNAs, as discussed for other CoVs, including
MERS-CoV (39, 42, 43). In ORF1a/ORF1ab, a ribosomal frame-
shift was predicted based on the tentative slippery sequence UUU
AAAC (indicated by an arrow in Fig. 4) (39, 44). Table 2 provides
details on the sizes and genomic locations of the 16 predicted
ORF1ab nonstructural proteins (nsp).

A separate comparison of the amino acid sequences of seven
conserved ORF1ab domains, as suggested by the International
Committee on Taxonomy of Viruses (ICTV) for formal CoV spe-
cies delineation, is shown in Table 3. The sequence identities of the
seven concatenated domains compared to those of other clade c
viruses (82.4 to 86.9%) were well below the 90% threshold pro-
posed by the ICTV (41), confirming the presence of a separate new
CoV species.

Figure 5 shows a comparison of the complete genomic nucle-
otide sequences of EriCoVs and HKU4, HKU5, and MERS-CoV.
The EriCoVs shared 96.9% overall nucleotide identity across the
two whole genomes (red line). They were almost equidistant from
the prototype clade c betacoronaviruses (orange and pale and dark
blue lines). Table 4 summarizes the amino acid sequence identities
between the predicted proteins of EriCoV and other clade c beta-
coronaviruses. The highest amino acid sequence identity between
EriCoV and the other clade c CoVs was observed for the mem-
brane protein, with 78.0 to 79.4% identity, and the lowest identity
was observed within ORF3a, with 26.7 to 28.9% identity. These
values were similar to values found in sequence comparisons be-
tween MERS-CoV and the prototype clade c betacoronaviruses
HKU4 and HKU5 (41).

Bayesian phylogenies of all EriCoV ORFs are shown in Fig. 6.
EriCoVs clustered as a sister clade to all previously known bat-
associated clade c CoVs and MERS-CoV. As in previous sequence
comparisons between MERS-CoV and HKU4 and HKU5 (45),
different topologies were observed for individual ORFs, in par-
ticular the envelope and nucleocapsid genes. While this might
indicate ancient recombination, it could as well result from
differential selective pressures acting on different genome por-
tions, causing slightly deviating inferences of apical phylog-
enies in those closely related viruses. Analysis by Bootscans on
nearly complete genome alignments identified no obvious
signs of recombination.

The failure to isolate EriCoV might predict a low potential to
replicate in heterologous host cells, unlike MERS-CoV, which in
cell culture shows relatively little host restriction (31). An analysis
of the spike gene sequence indicated that EriCoV cellular entry
may differ from that of MERS-CoV, because the receptor binding
domain (RBD) of MERS-CoV (46–48) and the corresponding re-
gion of EriCoV showed only 36.7% amino acid identity (88 of 240
residues). Whether the corresponding region in the EriCoV Spike
protein can interact with the MERS-CoV receptor dipeptidyl pep-
tidase 4 or its hedgehog-specific homologue remains to be deter-
mined (49). The detailed genomic analysis of EriCoV may facili-
tate the generation of recombinant clade c viruses once reverse
genetic systems for this betacoronavirus clade become available to

clarify the zoonotic potential of EriCoV and identify potential
virulence factors.

There is close phylogenetic relatedness between the mamma-
lian orders Chiroptera, which includes bats, and Eulipotyphla,
which includes hedgehogs (19, 50, 51). The phylogenetic cluster-
ing of EriCoV inside the bat-dominated clade c might hint at an
exchange of viruses between bats and hedgehogs in the past, and
yet, a divergence of EriCoV from bat CoVs during the formation
of the eulipotyphlan stem lineage cannot be excluded. Further
studies on putative CoVs in other insectivorous mammals, e.g.,
shrews or moles, in addition to CoVs in bats and an expansion of
the nidovirus diversity in insects may therefore allow further hints
at the evolutionary origins of CoVs. The detection of clade c beta-
coronaviruses in Chiroptera, Eulipotyphla, and primate hosts (hu-
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FIG 6 Phylogenies of all ORFs, including the novel hedgehog betacoronavi-
ruses. Statistical support of grouping from Bayesian posterior probabilities is
shown at deep nodes. For graphical reasons, only values above 0.7 are shown.
Scale bar represents genetic distance. The novel Erinaceus viruses are shown in
red, and MERS-CoVs in blue.
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mans) may be compatible with the high replicative capacity of
MERS-CoV on different mammalian cell lines (31) and could im-
ply that both bat and nonbat hosts should be investigated to elu-
cidate the origins of MERS-CoV.
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